Ma

KEY STAGE 3

ALL TIERS

2000

Mathematics tests

Mark scheme for Paper 2

Tiers 3-5, 4-6, 5-7 and 6-8

Excellence in schools

Index to mark schemes

Tier				Question	Page
3-5	4-6	5-7	6-8		
1				Menu	10
2				Making Shapes	11
3				Calculations	12
4				Sun Cream	12
5				Rulers	13
6				Measuring	13
7	1			Shapes	14
8	2			Tokens	15
9	3			Temperatures	16
10	4			Coaches	16
11	5	1		Cereal	17
12	6	2		Drawing	17
13	7	3		Huts	18
14	8	4		Canteen	19
15	9	5		Percentages B	19
16	10	6		Sign	19
17	11	7		Teachers	20
	12	8	1	Lift	21
	13	9	2	Scores	21
	14	10	3	Polygons	22
	15	11	4	Hedging	23
	16	12	5	Area	24
		13	6	Pitch	25
		14	7	Dots	26
		15	8	Families	27
		16	9	Triangles	28
		17	10	Counters	30
			11	Satellites	32
			12	Homework	33
			13	Pyramid	34
			14	Pots	35

Introduction

The test papers will be marked by external markers. The markers will follow the mark scheme in this booklet, which is provided here to inform teachers.

This booklet contains the mark scheme for paper 2 at all tiers. The paper 1 and the extension paper mark schemes are printed in separate booklets. Questions have been given names so that each one has a unique identifier irrespective of tier.

The structure of the mark schemes

The marking information for questions is set out in the form of tables, which start on page 10 of this booklet. The columns on the left-hand side of each table provide a quick reference to the tier, question number, question part, and the total number of marks available for that question part.

The 'Correct response' column usually includes two types of information:

- a statement of the requirements for the award of each mark, with an indication of whether credit can be given for correct working, and whether the marks are independent or cumulative;

■ examples of some different types of correct response, including the most common and the minimum acceptable.

The 'Additional guidance' column indicates alternative acceptable responses, and provides details of specific types of response which are unacceptable. Other guidance, such as when 'follow through' is allowed, is provided as necessary.

For graphical and diagrammatic responses, including those in which judgements on accuracy are required, marking overlays have been provided as the centre pages of this booklet.

Using the mark schemes

Answers that are numerically equivalent or algebraically equivalent are acceptable unless the mark scheme states otherwise.

In order to ensure consistency of marking, the most frequent procedural queries are listed below with the prescribed correct action. Unless otherwise specified in the mark scheme, markers will apply the following guidelines in all cases.

What if ...

The pupil's response does not match closely any of the examples given.	Markers should use their judgement in deciding whether the response corresponds with the statement of requirements given in the 'Correct response' column. Refer also to the additional guidance, and if still uncertain contact the supervising marker.
The pupil has responded in a non-standard way.	Calculations, formulae and written responses do not have to be set out in any particular format. Pupils may provide evidence in any form as long as its meaning can be understood. Diagrams, symbols or words are acceptable for explanations or for indicating a response. Any correct method of setting out working, however idiosyncratic, is acceptable. Provided there is no ambiguity, condone the continental practice of using a comma for a decimal point.
The pupil's accuracy is marginal	Overlays can never be 100\% accurate. However, provided the answer is within, or touches, the boundaries given, the mark(s) should be awarded.
according to the overlay provided.	The pupil's answer correctly follows
'Follow through' marks may be awarded only when specifically stated in the	
mark scheme, but should not be allowed if the difficulty level of the question	
has been lowered. Either the correct response or an acceptable 'follow	
through' response should be marked as correct.	

The final answer is wrong but the correct answer is shown in the working.	Where appropriate, detailed guidance will be given in the mark scheme, and must be adhered to. If no guidance is given, markers will need to examine each case to decide whether: the incorrect answer is due to a transcription error;	If so, award the mark.
	in questions not testing accuracy, the correct answer has been given but then rounded or truncated;	If so, award the mark.
	the pupil has continued to give redundant extra working which does not contradict work already done;	If so, award the mark.
	the pupil has continued, in the same part of the question, to give redundant extra working which does contradict work already done.	If so, do not award the mark. Where a question part carries more than one mark, only the final mark should be withheld.
The pupil's answer is correct but the wrong working is seen.	A correct response should always be marked as correct unless the mark scheme states otherwise.	
The correct response has been crossed (or rubbed) out and not replaced.	Mark, according to the mark scheme, any legible crossed (or rubbed) out work that has not been replaced.	
More than one answer is given.	If all answers given are correct (or a range of answers are given, all of which are correct), the mark should be awarded unless prohibited by the mark scheme. If both correct and incorrect responses are given, no mark should be awarded.	
The answer is correct but, in a later part of the question, the pupil has contradicted this response.	A mark given for one part should not be disallowed for working or answers given in a different part, unless the mark scheme specifically states otherwise.	

General guidance

Throughout the marking of the key stage 3 mathematics tests, the following general guidelines should be observed unless specific instructions to the contrary are given. This guidance reflects decisions made to ensure fairness and consistency of marking.

Responses involving probability

A numerical probability should be expressed as a decimal, fraction or percentage only.

	Accept \checkmark	Take care! Do not accept \times
For example: 0.7	\checkmark A correct probability that is correctly expressed as a decimal, fraction or percentage. \checkmark Equivalent decimals, fractions or percentages $\text { eg } \quad 0.700, \frac{70}{100}, \frac{35}{50}, 70.0 \%$ \checkmark A probability correctly expressed in one acceptable form which is then incorrectly converted, but is still less than 1 and greater than 0 eg $\frac{70}{100}=\frac{18}{25}$	The following four categories of error should be ignored if accompanied by an acceptable response, but should not be accepted on their own. ! A probability that is incorrectly expressed eg 7 in 10 , 7 out of 10, 7 from 10 ! A probability expressed as a percentage without a percentage sign. ! A fraction with other than integers in the numerator and/or denominator. However, each of the three types of error above should not be penalised more than once within each question. Do not award the mark for the first occurrence of each type of error unaccompanied by an acceptable response. Where a question part carries more than one mark, only the final mark should be withheld. ! A probability expressed as a ratio eg $7: 10,7: 3,7$ to 10 * A probability greater than 1 or less than 0

Responses involving money

	Accept \checkmark	Do not accept \times
For example: £3.20 £7	\checkmark Any unambiguous indication of the correct amount eg $£ 3.20$ (p), $£ 320, £ 3,20$, 3 pounds 20, £3-20, £3 20 pence, $£ 3: 20$, £7.00 \checkmark The f sign is usually already printed in the answer space. Where the pupil writes an answer other than in the answer space, or crosses out the f sign, accept an answer with correct units in pounds and/or pence eg $\begin{array}{r}320 \mathrm{p} \\ 700 \mathrm{p}\end{array}$	x Incorrect or ambiguous use of pounds or pence eg $£ 320, £ 320$ p or $£ 700$ p, or 3.20 or 3.20 p not in answer space. x Incorrect placement of decimal points, spaces, etc or incorrect use or omission of 0 $\begin{array}{ll} \text { eg } & £ 3.2, £ 3 \text { 200, } £ 320, \\ & £ 3-2-0 \\ & £ 7.0 \end{array}$

Responses involving the use of algebra

	Accept \checkmark	Take care ! Do not accept \times
For example: $\begin{array}{r} 2+n \\ n+2 \\ 2 n \end{array}$	\checkmark The unambiguous use of a different case eg N used for n \checkmark Unconventional notation for multiplication eg $n \times 2$ or $2 \times n$ or $n 2$ or $n+n$ for $2 n$, $n \times n$ for n^{2} \checkmark Multiplication by 1 or 0 eg $2+1 n$ for $2+n$, $2+0 n$ for 2 \checkmark Words used to precede or follow equations or expressions eg $t=n+2$ tiles or tiles $=t=n+2$ for $t=n+2$ \checkmark Unambiguous letters used to indicate expressions $\text { eg } \quad t=n+2 \text { for } n+2$ Embedded values given when solving equations eg $3 \times 10+2=32$ for $3 x+2=32$! Words or units used within equations or expressions should be ignored if accompanied by an acceptable response, but should not be accepted on their own eg do not accept $n \text { tiles + } 2$ $n \mathrm{~cm}+2$ \times Change of variable eg x used for n * Ambiguous letters used to indicate expressions $\text { eg } n=n+2$ However, to avoid penalising any of the three types of error above more than once within each question, do not award the mark for the first occurrence of each type within each question. Where a question part carries more than one mark, only the final mark should be withheld. x Embedded values that are then contradicted

Responses involving time

	Accept \checkmark	Take care! Do not accept \times
A time interval For example: 2 hours 30 min A specific time For example: 8.40am	\checkmark Any unambiguous indication eg 2.5 (hours), 2 h 30 Digital electronic time ie 2:30 Note that $2: 30$ is accepted for 2 h 30 m because it is a common electronic expression (eg the time interval shown on an oven timer). \checkmark Any unambiguous, correct indication eg $08.40,8.40,8: 40,0840,840$, $8-40$, twenty to nine, 8,40	x Incorrect or ambiguous time interval eg 2.3(h), 2.30, 2-30, 2h 3, 2.30 min ! The time unit, hours or minutes, is usually printed in the answer space. Where the pupil writes an answer other than in the answer space, or crosses out the given unit, accept an answer with correct units in hours or minutes, unless the question has asked for a specific unit to be used. x Incorrect time eg $\quad 8.4 \mathrm{am}, 8.40 \mathrm{pm}$ x Incorrect placement of divisors, spaces, etc or incorrect use or omission of 0 eg 840, 8:4:0, 084, 84

Responses involving co-ordinates

	Accept \checkmark	Do not accept \times
For example: $(5,7)$	```\(\checkmark\) Unambiguous but unconventional notation eg (05,07) (five, seven) \(\left(\begin{array}{l}x, ~ \\ (5,7)\end{array}\right.\) (\(x=5, y=7\))```	$\begin{aligned} \times \begin{array}{l} \text { Incorrect or ambiguous } \\ \text { notation } \\ \text { eg } \end{array} & (7,5) \\ & (5 x, 7 y) \\ & \left(5^{x}, y^{y}\right) \\ & \left(5^{x}, 7^{y}\right) \end{aligned}$

Recording marks awarded on the test paper

All questions, even those not attempted by the pupil, will be marked, with a 1 or a 0 entered in each marking space. Where 2 m can be split into 1 m gained and 1 m lost, with no explicit order, then this will be recorded by the marker as 1

The total marks awarded for a double page will be written in the box at the bottom of the right-hand page, and the total number of marks obtained on the paper will be recorded on the front of the test paper.

A total of 120 marks is available in each of tiers 3-5, 4-6 and 6-8, and a total of 121 marks in tier 5-7. The extension paper carries 41 marks.

Awarding levels

The sum of the marks gained on paper 1, paper 2 and the mental arithmetic paper determines the level awarded. A copy of the level threshold tables which show the mark ranges for the award of different levels will be sent to each school by QCA in July 2000.

Schools will be notified of pupils' results by means of a marksheet, which will be returned to schools by the External Marking Agency with the pupils' marked scripts. The marksheet will include pupils' scores on the test papers and the levels awarded.

The 2000 key stage 3 mathematics tests and mark schemes were developed by the Mathematics Test Development Team at QCA.

Tier \& Question						Menu
3-5	4-6	5-7	8			
1					Correct response	Additional guidance
a				1 m	1.06	
				1 m	3.94	! Follow through from an incorrect total Allow provided the total is more than $£ 1$, and is not an integral number of pounds.
b				1m	16	

Tier \& Question						Calculations
3-5	4-6 5	5-7	6-8			
3					Correct response	Additional guidance
a				1 m	662	
b				1m	6000	
c				1 m	483	
d				1 m	56	x Answer - 56

Tier \& Question						Rulers
3-5	4-6	5-7	6-8			
5					Correct response	Additional guidance
a				1m	120	! Incorrect units Ignore.
b				1 m	11.60	! Both money answers omit final zero Mark as 0,1
c				1 m	2.90	
d				1 m	5	! Incorrect units Ignore.

Tier \& Question						Measuring
3-5	4-6	5-7 6	6-8			
6					Correct response	Additional guidance
a				1m	190 ± 1	
b				1m	Correct place identified eg	\checkmark Within $\pm 2 m m$ \checkmark Any unambiguous identification \times Scale redrawn using an easier numbering system

Tier \& Question						Shapes
3-5	4-6	5-7	6-8			
7	1				Correct response	Additional guidance
a	a			$1 \mathrm{~m}$ $1 \mathrm{~m}$	Area 5 Perimeter 12	
b	b			1m	Any shape of area $6 \mathrm{~cm}^{2}$	\checkmark Shape connected at vertices Accept if unambiguous eg
c	c			1m	Correct perimeter Note: If the pupil uses whole squares, aligned with complete edges touching, the perimeter is 10,12 or 14 cm .	! Follow through from incorrect shape using whole squares Allow provided the area $>4 \mathrm{~cm}^{2}$ and the shape is not a copy of the diagram in (a). ! Follow through from shape using diagonals Allow measuring, $\pm 2 \mathrm{~mm}$, but do not allow answers rounded to the nearest centimetre unless a more accurate value is seen. ${ }^{x}$ Follow through from shape with an enclosed space eg
d	d			1 m	7	
e	e			1m	Explains that the diagonals of the grid are greater than 1	\checkmark Minimally acceptable explanation eg - Because the lines go through the middle of a square. \checkmark Diagonal measured as 1.3 to 1.5 cm inclusive \checkmark Perimeter measured as 9 to 10 cm inclusive \times Partial response eg - I measured the perimeter.

Tier \& Question					Tokens
3-5	4-6 5	5-7 6-8			
8	2			Correct response	Additional guidance
a	a		1m	Correct explanation focusing on more gold eg - 4 gold and only 1 silver. - Not as many silver. - Gold to silver is 4 to 1 or Explains there would need to be an equal amount of each colour eg - There's not the same number of gold and silver. - Only one silver. There should be 4	\checkmark Minimally acceptable explanation eg - Better/More chance of getting gold. - Only one silver. \checkmark Correct probability expressed in words At this level, accept eg - It's a 1 in 5 chance of getting silver. - Incorrect information, even if accompanying a correct response eg - More gold, it's a 1 in 4 chance of getting silver. - More gold, so she must take out a gold. \times Information restated with no indication of more gold eg - 4 gold and 1 silver. × Use of 'even' for 'equal'
b	b		1m	3	\checkmark Gold and silver inserted in the correct proportions eg - 2 gold, 5 silver.
c	c		1m	At least one of 5, 6, 7 or 8	\checkmark Any unambiguous indication eg - Tokens drawn. \checkmark A correct range eg - More than 4 - 6-8 \checkmark A correct value expressed as a ratio or fraction of 8 eg - $\frac{7}{8}$ \mathbf{x} Not quantified eg - More gold than silver.

Tier \& Question						Temperatures
3-5	4-6	5-7	6-8			
9	3				Correct response	Additional guidance
a	a			$1 \mathrm{~m}$ $1 \mathrm{~m}$	77 80	
b	b			1m	32 and 30 in the correct order.	
c	c			$2 \mathrm{~m}$ or 1m	Shows both rules give a value of 50 eg - $10 \times 1.8+32=50,10 \times 2+30=50$ 50 seen	\checkmark Minimally acceptable response eg - 50, 50 ! Incorrect units Ignore.

Tier \& Question						Coaches
3-5	4-6	5-7	6-8			
10	4				Correct response	Additional guidance
a	a			$\begin{array}{\|c} 2 \mathrm{~m} \\ \\ \text { or } \\ 1 \mathrm{~m} \end{array}$	58 57 or 57.(..) seen or $3000 \div 52$ seen	$\checkmark 58$ shown as a minimum eg - 58 or more.
b	b			1 m	24360	! Follow through as their (a) $\times 420$ If their answer to (a) is not an integer, accept their (a) rounded or truncated, and accept the answer then rounded or truncated to the nearest penny.
c	c			1 m	8.12	\checkmark Follow through from their part (b) $\text { ie }(b) \div 3000$ \checkmark Answer from their (b) rounded or truncated to the nearest penny

Tier \& Question						Cereal
3-5	4-6	5-7	6-8			
11	5	1			Correct response	Additional guidance
a	a	a		$1 \mathrm{~m}$ $1 \mathrm{~m}$	$\frac{1}{4}$, or equivalent probability $\frac{1}{2}$, or equivalent probability	\checkmark Correct response accompanied by description of the probability Ignore the description eg, accept - 25%, that's fairly likely.
b	b	b		1m $1 \mathrm{~m}$	0 , or equivalent probability $\frac{2}{3}$, or equivalent probability	\checkmark Probability of zero expressed in words or as a fraction, even if the denominator is 'incorrect', or as a ratio eg - None. - Impossible. - $\frac{0}{3}$ - $\frac{0}{4}$ - 0:4

Tier \& Question						Huts
3-5	4-6	5-7	6-8			
13	7	3			Correct response	Additional guidance
a	a	a		$\begin{gathered} 2 \mathrm{~m} \\ \\ \text { or } \\ 1 \mathrm{~m} \end{gathered}$	33 Correct method eg - $4 \times 8+1$	\checkmark For $1 m$, method is repeated addition with not more than one computational error eg - $13+4+4+4+4+4$ - $17,21,25,29,32$
b	b	b		$\begin{array}{\|c} 2 \mathrm{~m} \\ \\ \text { or } \\ 1 \mathrm{~m} \end{array}$	20 Correct method eg $80 \div 4 \text { seen }$	
c	c	c		1 m	Correct expression of $m=5 h+1$ eg	

Tier \& Question				Canteen		
3-5	4-6 5	5-7	6-8			
14	8	4			Correct response	Additional guidance
				1m	Gives a correct explanation. The most common correct explanations are: Explaining events are not equally likely eg - Not many people work in the canteen. - They might not be equal chances. - The probability is different for each group. - There are different amounts of pupils and teachers. - The number of pupils is more than one third. - The probability needs to be out of all the pupils, teachers and canteen staff. or Explaining the statement implies equal numbers of pupils, teachers and canteen staff eg - It would be true if there were 20 pupils, 20 teachers and 20 dinner people. or Giving a counter-example eg - Suppose there were 190 pupils, 8 teachers and 2 canteen staff. The probability would not be a third.	! Explanation infers exact quantities required Accept if accompanied by a correct response eg, accept - Each probability is different. You need to know the numbers in each group. eg, do not accept - You need to know the exact numbers in each group. \mathbf{x} Incorrect statement, even if accompanied by a correct response eg - It's not equal chances, the probability is 1 divided by the whole school. - It depends on how many children there are. If there were 10 children the probability would be 0.1 \mathbf{x} Incomplete or ambiguous statement eg - More pupils. - There is more than 1 pupil, 1 teacher and 1 canteen staff. - More than 3 people. - There are 3 choices but there's more than 3 papers in the box. - It depends on how many pupils, teachers and canteen staff there are.

Tier \& Question						Percentages B
3-5	4-6	5-7	6-8			
15	9	5			Correct response	Additional guidance
				$1 \mathrm{~m}$ $1 \mathrm{~m}$	2.12 12.25	! Redundant \% sign eg - 2.12\% Penalise first occurrence only. $\checkmark 25 p$ expressed as a fraction of a pound

Tier \& Question								Sign
3-5	4-6	5-7	6-8					
16	10	6				Correct response	Additional guidance	
				1 m	8		\checkmark Answer between 8 and 8.1 inclusive	

Tier \& Question						Lift
3-5	4-6	5-7	6-8			
	12	8	1		Correct response	Additional guidance
	a	a	a	1 m	Ground floor (0) and 12, either order	
	b	b	b	1 m	60 ± 2	
	c	c	c	1 m	A line from $(80,22)$ to $(125,0)$ that has no positive gradients.	\checkmark Extends the horizontal line at floor 22 before descending Accept provided the descent takes 45 seconds with no further stops. \checkmark Line from $(75,22)$ to $(120,0)$ \checkmark Line not ruled but intention clear \checkmark Parts of the line show acceleration and deceleration

Tier \& Question						Scores
3-5 4-6	5-7	6-8				
13	9	2		Correct response	Additional guidance	
a	a	a	1m	6		
b	b	b	1 m	1 and 5, either order		
c	c	c	2 m or 1m	Any set of three numbers that total 9 and have a range of 4 eg - $1,3,5$ - $1.5,2,5.5$ Their three numbers total 9 or Their three numbers have a range of 4		

Tier \& Question				Polygons		
3-5	4-6	5-7	6-8			
	14	10	3		Correct response	Additional guidance
	a	a	a	1m	Correct explanation The most common correct explanations refer to: The angles in a triangle summing to 180 eg - Each triangle is 180° and $180 \times 2=360$ or The correct use of a relevant formula such as $180(n-2)$ or $(2 n-4)$ right angles eg - $180(4-2)$ - $2 \times 4-4=4$, and $4 \times 90=360$	\checkmark Minimally acceptable explanation eg - 2×180 - Each triangle is 180 \mathbf{x} Explanation lacks generality eg - Specific quadrilaterals used as examples. - $4 \times 90=360$ \mathbf{x} No evidence given eg - Because all 4-sided shapes have 360° \times Incomplete use of external angles eg - If you turn all the way round the shape you turn 360° \mathbf{x} Use of corners eg - Cut the corners and put them together and it makes a complete turn.
	b	b	b	1m	540	
	c	c	c	$2 \mathrm{~m}$ or 1m	Correct method eg - 5×180 - $180 \times(7-2)$ - $360+360+180$ - $360+540$! Follow through as part (b) +360 Allow, provided (b) > 360 ! Throughout the question, the only error is to use an incorrect, but consistent, value for the number of degrees in a triangle Mark part (c) as 1, 0 provided (c) >360

Tier \& Question			8 (Hedging		
3-5	4-6 5-7	5-7 6-8			
	151	114	4	Correct response	Additional guidance
	a a	a a	$2 \mathrm{~m}$ or 1m	78.(0..) Digits $650(00) \div$ digits 833 or Digits $78(0 .$.$) seen$	
	b b	b b	b 2 m or 1m	88.6 or $88.5(.$.$) or 89$ Digits $2437(5) \div$ digits 2751 (15) or An otherwise correct response, with the decimal point omitted or incorrectly placed.	! Answer 88 Accept provided there is no evidence of an incorrect method.
	c c	c c	c 1 m	Privet, with digits 17 (..) and 13 (..) seen. or Privet, by comparing unit prices for both plants eg - One privet is 1.3 , so 125 would cost 162.5 , so privet is cheaper. - 5 privet cost $£ 6.50,5$ beech cost $£ 8.50$ so beech is more expensive. - Privet, $212.5 \div 125$ is bigger than $45.5 \div 35$ - $4 \times 35=140$ and $4 \times 45.5=182$, so more privet for less money than beech. or Privet, by using ratio to compare prices (condone the use of rounded/truncated values) eg - $125 \div 35=3.57, \times 45.5=162.45$ so privet cheaper. - $125 \div 35=3.57,212 \div 3.57=59.4$, privet.	\checkmark Use of rounded or truncated values for 212.50 and/or 45.50 eg - 212 and 45 used, resulting in 1.696 rounded or truncated for beech, and 1.2857.. rounded or truncated for privet. \checkmark Use of rounded or truncated values for intermediate values ! Conclusion not shown Accept only if prices are correct and identified with the correct plant eg, accept - Privet 1.3 , beech 1.7 eg, do not accept - Digits 17(..) and 13(..) seen without linking to relevant plants. ! Plants per pound calculated Accept only if the correct interpretation is shown eg, accept - You'd get 0.588 beech plants with one pound, and 0.769 privet plants for one pound so privet is cheaper. eg, do not accept - $125 \div 212.5=0.588,35 \div 45.5=0.769$, so privet is cheaper.

Tier \& Question						Area
3-5	4-6	5-7	6-8			
	16	12	5		Correct response	Additional guidance
	a	a	a	$2 \mathrm{~m}$ or $1 \mathrm{~m}$	452 Correct method eg - $\pi \times 12^{2}$ - $\pi \times 12 \times 12$ - 452.(..) - 144π	\times Use of mm^{2} as evidence of 12^{2} eg $\cdot 3.14 \times 12 \mathrm{~mm}^{2}$
	b	b	b	1 m	226	\checkmark Follow through as part (a) $\div 2$! Answer not rounded to the nearest mm^{2} Accept if their answer to part (a) was 452.(..) or 144π, ie this error has already been penalised.
	c	c	c	$2 \mathrm{~m}$ or $1 \mathrm{~m}$	15 or $15.0(.$. Correct method eg - $\sqrt{ }$ their (b) - $\sqrt{ }(72 \pi)$! For $2 m$, follow through as $\sqrt{ }($ their b) Accept answers rounded or truncated, provided there is no evidence of an incorrect method. ! Method is trial and improvement Do not penalise as an incorrect method, but do not credit as a correct method.

Tier \& Question				Triangles		
3-5	4-6 5	5-7	6-8			
		16	9		Correct response	Additional guidance
		a	a	1 m	Correct explanation The most common correct explanations are: Showing or implying that 6^{2} is added to 8^{2}, with either 10^{2} or the use of $\sqrt{ }$ eg - $6^{2}+8^{2}=10^{2}$ - $6^{2}+8^{2}=100, \sqrt{ } 100=10$ - 10 is $\sqrt{ } 100$, and $100=64+36$ - $\mathrm{AB}^{2}+\mathrm{BC}^{2}=100, \sqrt{ }=10$ - $\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}$ or Referring to the $3,4,5$ triangle - Each side is double 3, 4, 5 - It's the $3,4,5$ triangle. - The $3,4,5$ triangle must have a right angle.	\times Answer found through scale drawing Do not accept in any part of this question. \mathbf{x} Incomplete explanation that does not refer to either 10^{2} or $\sqrt{ }$ eg - $\mathrm{AB}^{2}+\mathrm{BC}^{2}=100$ - $36+64=100=10$ \checkmark Minimally acceptable explanation eg - 6, 8, 10 triangle. \times Incomplete explanation eg - Because of Pythagoras. - If it wasn't 10 it wouldn't be rightangled. - $a^{2}+b^{2}=c^{2}$ (without linking to the diagram).
		b	b	$\begin{gathered} 2 \mathrm{~m} \\ \\ \text { or } \\ 1 \mathrm{~m} \end{gathered}$	$\sqrt{ } 136$ or 11.7 or $11.6(.$. Complete correct method eg - $\sqrt{ }\left(6^{2}+10^{2}\right)$ - $\sqrt{ } 136=($ incorrect $)$! Answer 12 or 11 Accept only if a valid method, or more accurate response, seen. \checkmark Use of tangent to find an angle, then correct use of sine or cosine x Partial Method If Pythagoras is used, the square root must be seen or implied. Do not accept $\mathrm{AD}^{2}=136$ as sufficient.

		Counters		
Tier \& Question 3-5 4-6 5-7 6 -8 1710				
			Correct response	Additional guidance
		2m or 1 m	Note that as there are many alternative correct justifications, for ease of use this mark scheme shows categories of response, with 1 m and 0 m responses shown alongside. Chooses A; justifies using fractions of totals of 30 and 26 then converting to fractions that have common denominators eg - $\frac{12}{30}=\frac{26}{65}$, but $\frac{10}{26}=\frac{25}{65}$, choose A - $\frac{12}{30}=\frac{312}{780}, \frac{10}{26}=\frac{300}{780}$ which is less, so A or common numerators eg - $\frac{12}{30}=\frac{10}{25}, \mathrm{~B}$ is $\frac{10}{26}$, A more chance. - $\frac{12}{30}=\frac{120}{300}, \frac{10}{26}=\frac{120}{312}$ so A Converts to a form that enables comparison, but makes an incorrect or no conclusion eg - $\frac{12}{30}=\frac{26}{65}$, but $\frac{10}{26}=\frac{25}{65}$ so choose B or Shows a complete correct method with only one computational error, then chooses the correct bag for their calculation eg - $\frac{12}{30}=\frac{5}{6}=\frac{65}{78}$ but B is $\frac{30}{78}$, so choose A - $\frac{12}{30}=\frac{1}{3}=\frac{26}{78}$ but B is $\frac{30}{78}$, so choose B or Chooses bag A and partially justifies by cancelling both fractions correctly, even if not to their simplest form eg - $\frac{12}{30}=\frac{2}{5}, \frac{10}{26}=\frac{5}{13}$, so A - A because $\frac{12}{30}=\frac{6}{15}$, B is $\frac{5}{13}$	\checkmark Unconventional fractions used In this context, accept eg, for $2 m$ - A is $\frac{4}{10}, \mathrm{~B}$ is $\frac{3.8}{10}$ so A - A because $\frac{12}{30}>\frac{11.5}{30}$ - A because $\frac{12}{30}=\frac{10.4}{26},>\frac{10}{26}$ \times Fractions not cancelled eg $\text { - } \mathrm{A} \text { is } \frac{12}{30}, \mathrm{~B} \text { is } \frac{10}{26} \text {, so } \mathrm{A}$

Tier \& Question			Satellites		
3-5	4-6	5-7 $6-8$			
		11		Correct response	Additional guidance
		a	$\begin{array}{\|c\|} \hline 2 \mathrm{~m} \\ \\ \text { or } \\ 1 \mathrm{~m} \end{array}$	5.82×10^{6} Digits 582(..) seen eg - 5820000 - 5820 - -5.82×10^{6} or Shows 15300000 and 9480000 , then makes no more than one computational error when subtracting, then correctly converts their answer into standard form eg - $\begin{aligned} & 15300000-9480000=5720000 \\ & =5.72 \times 10^{6}\end{aligned}$	\checkmark Answers rounded eg, for part (a) - 6×10^{6} eg, for part (b) - 2.5×10^{7} \checkmark For (a), minimises A and maximises B For 2 m , accept 5.765×10^{6} For 1 m , accept digits 576 (..) seen. \checkmark For (a), minimises 5.82 For 2 m , accept 5.815×10^{6} For 1 m , accept digits 5815 seen. ! Unconventional standard form notation Penalise the first occurrence only.
		b	$\begin{gathered} 2 \mathrm{~m} \\ \\ \text { or } \\ 1 \mathrm{~m} \end{gathered}$	2.478×10^{7} Digits 247(..) or 248 seen or Shows 2.4×10^{7} or Shows 15300000 and 9480000 , then makes no more than one computational error when adding, then correctly converts their answer into standard form eg $\begin{aligned} & 15300000+9480000=2678000 \\ & =2.678 \times 10^{7} \end{aligned}$	\checkmark For (b), maximises A and maximises B For 2 m , accept $2.48(..) \times 10^{7}$ For 1 m , accept digits 248 (..) seen.

Tier \& Question			Homework		
3-5	4-6	5-7 6-8			
		12		Correct response	Additional guidance
		a	$2 \mathrm{~m}$ or 1m	Complete correct method, using mid-points eg - 1590 45630 751575 $105 \frac{945}{3240}, \div 50$ - $6 \times 15+14 \times 45+21 \times 75+9 \times 105$, then $\div 50$ - $90+630+1575+945$ is 3240 , and $64.8 \times 50=3240$ Showing that at least 2 mid-points are multiplied by the frequency, even if the others are incorrect or omitted. or An otherwise complete correct method with clear intent to use the mid-points, but inaccurate values used eg	! 3240 seen with no working As this could come from 64.8×50, allow 1 mark only. \times Mid-points used incorrectly eg $\begin{aligned} & 15+45+75+105=240, \div 50=4.8 \\ & \text { and } 4.8 \times 13.5=64.8 \end{aligned}$
		b	$\begin{gathered} 2 \mathrm{~m} \\ \\ \text { or } \\ 1 \mathrm{~m} \end{gathered}$	67 ± 1 Correct method seen or implied eg - Vertical line seen. - Correct marking on the x-axis. or Correct point identified on the graph and a value of between 63 and 70 inclusive given.	\checkmark For $2 m, 67$ seen then rounded to 70 \mathbf{x} The horizontal line only seen
		c	$\begin{gathered} 2 \mathrm{~m} \\ \\ o r \\ 1 \mathrm{~m} \end{gathered}$	4 46 seen or Value between 3.5 and 4.5 or The correct horizontal line shown or implied on the graph, with the scale misinterpreted but leading to a value of less than 10	

Tier \& Question			Pots		
3-5	4-6 5	5-7 6-8			
		14		Correct response	Additional guidance
		a	1m	0.0009 , or equivalent probability eg - $\frac{9}{10000}$ - 0.09%	
		b	$2 \mathrm{~m}$ or 1m	0.0582, or equivalent probability eg - $\frac{582}{10000}$ Correct method eg $(0.03 \times 0.97) \times 2$ or $0.029(1)$, or equivalent probability, seen.	$\checkmark 0.058$ or equivalent ! 0.06 Do not accept unless a correct method, or a more accurate value, is seen.
		c	1m	Yes, with justification The most likely justifications involve: The use of 80 eg - $0.97 \times 80=77.6$ - $0.03 \times 80=2.4$ - Yes, since only 2.4 will crack. or The use of 75 , with a correct explanation interpreting the calculation eg - $0.03 \times 75=2.25$ so that's only 72 made, but there's enough for 5 more pots and with such a low probability you wouldn't expect more than one to crack. - $0.03 \times 75=2.25$, that gives you enough for 77 pots. - $0.97 \times 75=72.75$, but with the clay for 5 more pots you are going to break one so you'll have enough. or The use of 100 eg - As 3 broke in every 100 , there will be enough. - As 3 in every 100 break, it's not likely 5 will break. - Yes, because only 3 will break. - Yes, only about 2 will break.	\checkmark Comparing probabilities eg - Yes, because 5 in 80 is more than 3 in 100 \mathbf{x} Incorrect use of 75 eg - $0.03 \times 75=2.25$ $80-2.25=77.75$, so that's enough.

NATIONAL
CURRICULUM
5-16

GCSE

GNVQ

GCE A LEVEL

NVQ

First published in 2000
© Qualifications and Curriculum Authority 2000

Reproduction, storage, adaptation or translation, in any form or by any means, of this publication is prohibited without prior written permission of the publisher, unless within the terms of licences issued by the Copyright Licensing Agency. Excerpts may be reproduced for the purpose of research, private study, criticism or review, or by educational institutions solely for educational purposes, without permission, provided full acknowledgement is given.

Produced in Great Britain by the Qualifications and Curriculum Authority under the authority and superintendence of the Controller of Her Majesty's Stationery Office and Queen's Printer of Acts of Parliament.

The Qualifications and Curriculum Authority is an exempt charity under Schedule 2 of the Charities Act 1993.

Qualifications and Curriculum Authority
29 Bolton Street
London
W1Y 7PD
www.qca.org.uk/

Further teacher packs may be purchased (for any purpose other than statutory assessment) by contacting:

QCA Publications, PO Box 99, Sudbury, Suffolk CO10 2SN
(tel: 01787 884444; fax: 01787312950)

